

EXPERIMENT NUMBER - 3.11

STUDENT NAME: DIVYANSH PANDEY

UID:21BCS11270 BRANCH:

CSE DOP: 01/06/2022

SUBJECT: PHYSICS FOR ENGINEERS

GRP: 510 B

AIM OF THE EXPERIMENT-

To measure the g using kater's pendulum.

APPARATUS-

S.N.	Equipment	Range	Quantity	
1	Kater's pendulum	120cm	1	
2	Stop watch	N.A	1	
3	Meter rod	100cm	1	

OBSERVATION TABLE-

FORMULA USED:

$$g = \frac{8\pi^2}{\frac{T1^2 + T2^2}{l_1 + l_2} + \frac{T1^2 - T2^2}{l_1 - l_2}}$$

The following formula is used for the determination of acceleration due to gravity 'g':

S No	No. of Oscillati ons	Time about the knife edge Kı		Time of one oscillati on T1 (secs)	Mea n T1 Secs.		ie ut th fe ed		Time of one oscillati on T2 (secs)	Mea n T2 Secs.	
		Min	Sec	Tota l	(3003)		Min	Sec	Tota l	(SCS)	
1.	20	O	39	39	1.95	1.95	O	38.8	38. 8	1.94	1.94
2.	25	O	48.75	48.75	1.95		O	48.5	48. 5	1.94	

Here, T1: time periods of the oscillating pendulum from knife-edge K1 T2: time periods of the oscillating pendulum from knife-edge K2 l1: distances between knife-edges K1 and CG of the pendulum l2: distances between knife-edges K2 and CG of the pendulum

CALCULATIONS-

Distance between K1 and CG (l1) = 66.25 cm Distance

between K2 and CG(12) = 23.75cm

$$T_{1} = 1.957 \quad T_{2} = 1.947 \quad T_{3}.l_{1} = 66.25$$

$$T_{1} = 3.8 \quad T_{2}^{2} = 3.76 \quad l_{5} = 23.75$$

$$T_{1}^{2} + T_{3}^{2} = 3.8 + 3.76 = 8.404$$

$$T_{1}^{2} + T_{3}^{2} = 0.04 = 0.001$$

$$l_{1} \cdot l_{2} = 66.25 - 33.75 \quad 42.25$$

$$g = \frac{8\pi^{2}}{1.2 + 13} + \frac{7\cdot 7\cdot T_{3}}{2\cdot 12} = \frac{8\pi^{2}}{8.404 + 0.001}$$

$$q + l_{2} = \frac{8\pi^{2}}{2\cdot 12}$$

PERCENTAGE ERROR-

• RESULTS AND DISCUSSION-

Acceleration due to gravity

'g'=9.39 m/s^2 Standard value

of 'g' = $9.8 \text{ m/s} ^2$

Percentage Error=4.18%

Conclusion: Hence, the value of the acceleration due to gravity, i.e. 'g' has been calculated and is found to be approximately equal to the standard value of the acceleration due to gravity.

LEARNING OUTCOMES

- 1. Remember the concepts related to fundamentals of C language, draw flowcharts and write algorithm/pseudocode.
- 2. Understand the way of execution and debug programs in C language.
- 3. Apply various constructs, loops, functions to solve mathematical and scientific problem.
- 4. Analyze the dynamic behavior of memory by the use of pointers.
- 5. Design and develop modular programs for real world problems using control structure and selection structure.

EVALUATION COLUMN (To be filled by concerned faculty only)

Sr. No.	<u>Parameters</u>	Maximu m Marks	Marks Obtaine d
1.	Worksheet Completion including writing learning objective/Outcome	10	
2.	Post-Lab Quiz Result	5	
3.	Student engagement in Simulation/Performance/ Pre-Lab Questions	5	
4.	Total Marks	20	